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We argue that the validity of the WKB approach for calculating nonequilibrium properties of a nonlinear
stochastic system requires an additional criterion involving the time interval, compared with the standard WKB
criterion considered by Mannel[&®. Mannella, Phys. Rev. &8, 2479(1999]. In order to clarify the situation,
we compare the WKB solution with the direct numerical solution of the Fokker-Plank equation.
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In Ref.[1] we applied the WKB approximation in order to if the time intervalt is long enough, in order to satisfy the
calculate nonequilibrium properties of nonlinear stochasticondition of minimal action the system has to be located in a
systems such as the transition probabift{x; ,t;xq,tp) to  nonequilibrium state near the unstable point for a long period
find the system at poink; at timet; if at time ty it was of time. This difficulty does not arise for the solution chosen
located atx,. The notion of a nonstationary optimal path in Ref. [1], which reflects the tendency of approaching the
was introduced as a trajectory of an auxiliary mechanicafauilibrium. o
system corresponding to minimum action between points On the other hand, one can expect that the criterion of
(Xo.to) and ; ,t;). Mannella’s analysif2] suggests that for minimal action would select the true optimal trajectory for
nonstationary optimal trajectories the situation can be moré<7p - Sincerp depends on the value of the diffusion coef-

complicated than for stationary trajectories due to the exisf';r'er(‘:g:‘rr‘]%tcgg'fnea:;‘afa\r/i%rriogggg doér:rlﬁeom?Bogtlmrilxtirrﬁﬁc_
tence of multiple solutions. y P PP

. . . tion. The direct solution of the Fokker-PlaikP) equations
For an overdamped one-dimensional system with poteni-S required
.tia.ll. LIJ(X) d:f'_ %IXZJF.%XA' 3r;d some pirti_cular valuels Off the In order. to clarify the situation, we have solved the FP
Initial and final point and long enough time inteni@lg., for o4 ation for the transition probability corresponding to the
Xo=—0.5, x;=—0.1, andt=t;—t,=8 chosen in Refl1]),  giochastic Langevin equation studied in Ré1s2]. Based on
two nonstationary optimal trajectories were fouidd and it the solution obtained, we present in Fig. 1 the calculated
was shown that the minimum acti@~ 0.22 corresponds to ygajues of—D In P(—0.1f;—0.5,0) and compare them with
the trajectory which moves first to the unstable poirtO,  the values ofS(—0.1t;—0.5,0) for the two optimal solu-
stays there for some time., and_ then moves back to the_ finalons in the WKB approacf2]. One can see that the optimal
point [3]. The other solutionwith S=0.49), presented in solution corresponding to the steady-state vaue).49 ap-

Ref. [1], corresponds instead to the trajectory which firstpears forlt|=6. This optimal solution is close to the solution
goes to the attractor=—1 and stays there before reaching

the final point(note that only this type of solution is realized 0.7 T T T T T T
in linear systems Mannella proposed that the condition of 0.65 -
minimal action might be the natural criterion for choosing 0.6 -
one or another trajectory in analogy with stationary optimal 0.55 -
trajectories. A, 05E

We emphasize, however, that for nonstationary trajecto-g .45
ries the criterion of minimal action has only a limited range /@ 4
of applicability and depends on the duration of the time in-

) ) 0.35 |k
terval t. Indeed, according to the general properties of sto- osl
chastic processes, the system under consideration shoul )
possess the characteristic timg for which the system ap- 0351
proaches its quasiequilibrium state in the basin of a 0.2
given attractor, described by the probability density
PeAx;). That is, P(X;,t;;Xg,to)—P*Yx;) at t>7p, t
where  P(X;,t;Xo,to) cexp(— S(Xt,ts:Xo,t0)/D), P(Xy) FIG. 1. The values of—DInP(-0.1,0;~0.5,) for D

xexp(—S*q(x)/D), S*qx;)=2[U(x1)—U(Xc)], andD is =0.1, 0.025, and 0.001 obtained by the numerical solution of the
the diffusion coefficient. Sinc&®*{(—0.1)=0.49, the crite-  Fokker-Plank equation. Curves 1 and 2 represent the values of
rion of minimum action in choosing the nonstationary opti- —D In P(—0.1,0:—0.5,0) obtained with the use of the WKB ap-
mal path in the presence of multiple solutions contradicts th@roximation, which show the existence of multiple solutions for a
tendency of approaching the quasiequilibrium state. In factlong time interval.
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given by the FP equation for the values@f-0.1 (the de- scribe the transition probability only for extremely small val-

viation of the values—D In P from their optimal values is ues ofD, leading to vanishing values of the transition prob-

caused by the preexponential factor, not included in thebility which are outside of the typical experimentally acces-
WKB solution). At the same time, for smaller values bf  Sible regime.

more time is required for the system to approach the quasi- The authors thank V.N. Smelyanskiy for helpful discus-

equilibrium. However, one can see from Fig. 1 that the opsions. This work was supported by the National Science
timal solution with minimum action would adequately de- Foundation.
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